
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Mobile Fact and Concept Training System
(MoFaCTS)

Philip I. Pavlik Jr., Craig Kelly, Jaclyn K. Maass

Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152, USA
ppavlik@memphis.edu, cnkelly@memphis.edu, jkmaass@memphis.edu

Abstract. The effectiveness of Intelligent Tutoring Systems (ITS) research is en-
hanced by tools that allow researchers to quickly bridge the divide between the-
oretical and applied work. By providing a common infrastructure to test cognitive
and learning science theories in authentic contexts with real students, the Mobile
Fact and Concept Training System (MoFaCTS) can aid in accelerating ITS re-
search and real world implementation. MoFaCTS is run from a web browser and
allows the teacher or administrator to set up a sequence of units of content. Be-
cause the “optimal practice” module is interchangeable, the system allows for the
comparison of alternative methods of adaptive practice. To foster faster research
progress, data export supports the DataShop transaction format, which allows
quick analysis of data using the DataShop tools. Integration with Amazon Turk
allows quick and efficient data collection from this source.

Keywords: intelligent tutoring systems, e-learning, instructional design

1 Introduction

MoFaCTS was based on the FaCT system, which was created to make faster progress
on laboratory research and its translation to the classroom [1]. MoFaCTS is the latest
implementation of the FaCT system, which has new features in addition to running in
HTML5, which provides mobility to any common web browser. The framework of
MoFaCTS is based on an implicit theory of “chunk” learning [2] which assumes that
learning of chunks occurs through discrete “trials” (e.g. a single step problem or fill-in-
in the blank sentence). As such it departs from the tradition of model tracing tutors [3],
which focus on multistep problems of greater complexity, where the student is learning
a sequence of rule applications. The simplified chunk-based approach in MoFaCTS
allows the system to focus more clearly on the problem selection aspect of tutoring, and
how the selected sequence can be improved. Moreover, from the beginning the system
was designed without strong assumptions about the optimal schedule. Because of this
the system is easy to adapt to the needs of specific projects. Screenshots of the system
in action, see Figure 1, show a variety of functions, including multiple choice respond-
ing, fill-in-the-blank responding with branched feedback, and image-stimuli items.

Fig. 1. Example screenshots.

2 Client/ Server Architecture

MoFaCTS was built using Meteor, a framework based on Node.js which uses a single
programming language (JavaScript) for both the client and server logic [4-6]. Commu-
nication between the two sides of the architecture is handled transparently by the frame-
work. This architecture conveniently off-loads any complex computations needed to
compute practice schedules to the client machine, which allows much larger numbers
of users to interact with the system simultaneously.

Since the web is a popular platform for content and application delivery, MoFaCTS
is able to leverage a vast body of open source software. Currently this includes the
Bootstrap CSS framework developed by Twitter [7]. Bootstrap provides MoFaCTS
with a typographic and layout framework. Most importantly, Bootstrap contributes re-
sponsive web design, so content appears correctly on both desktop web browsers and
mobile devices [8]. The HMTL displayed to the user is generated via Meteor's templat-
ing system. This system uses a style known as "reactive programming" [9]. A piece of
code can change data on the server and trigger a change on the client. This style of
programming works well with the frequent switches in display necessary when se-
quencing multiple educational content objects.

The server portion of MoFaCTS runs on the Node.js JavaScript server, which gives
it access to all of the libraries and asynchronous communication abilities of Node.js. In
addition, the Meteor framework simplifies the server code required for an application
of this type. When the client contacts the server, Meteor transparently provides data
transport, call batching, and automated retry. This functionality leads to excellent per-
formance without the need for more complex software. This architecture is particularly
useful given the need for frequent logging to maintain the database of users’ learning
histories. This MoFaCTS data is stored in a document-oriented database system named
MongoDB [10]. In addition, MongoDB is schema-free, which allows for rapid iteration
when designing new features or upgrades, which is often a great advantage in research.

3 Functionality

MoFaCTS has two primary unit types, learning and assessment, which define its two
main modes of application. Both kinds of units are specified in the control file for each
“tutor”, which is called the tutor definition file (TDF). Each tutor definition file begins
with a number of preliminaries, including the initial randomization commands. These
randomizations allow the specification of shuffle and swap commands. The shuffle

command generates random orders within groups of specified sequences (e.g. “<shuf-
fle> 0-5 6-11” shuffles the first 6 items among themselves and then shuffle the next six
items among themselves). The swap command randomizes the order of those specified
sequences (e.g. “<swap> 0-5 6-11” randomizes the order of the groups of sequences,
so in this simple case it would be either 0-5 6-11 still or 6-11 0-5, while retaining the
order of the subsequences). By running a shuffle and then a swap command, complex
distributions of stimuli across conditions can be achieved. To enable comparisons of
different assessment or learning conditions, the system also automatically randomizes
into any number of between-subjects conditions. This choice is recorded in the data for
each subject, and reinstated when they begin new sessions from the same root TDF, so
multi-session between-subjects comparisons with counter-balancing are easily enabled.

3.1 Units

The first main type of unit is the assessment unit, which allows for complex schedules
of content, where the TDF author has specified the number of repetitions and the loca-
tion in the sequence for each repetition of each item. Each repetition may be a test with
or without feedback or a passive study opportunity. Assessment units may be used for
quizzes in a classroom setting or for experiments looking at practice, forgetting, learn-
ing, and/or recall. In an experimental context, the system allows additional sequence
level randomization, to make sure blocks of the same items are individually random-
ized, so that spacing conditions are not predictable. Any number of assessment units
can be strung together, which allows pretest, practice and posttest portions to be orga-
nized individually to compose a larger experiment. Because the data architecture (de-
scribed below) saves the state of the learner at all times, assessment sessions are auto-
matically resumed where they were previously stopped, allowing for multiple experi-
mental sessions for the same experiment over days or weeks.

The system also allows the specification of units with dynamic scheduling based on
a select function. These units sequence the items according to a mechanism in the select
function. This select function could be based on any sort of model of the learning and/or
pedagogical rules. Typically, the adaptive learning module would be some version of
Pavlik’s optimal learning method [11], which uses a computational model of memory
to infer the best item to practice next.

Although assessment and learning units can both provide brief instructional screens
prior to practice, an “instructions unit” presents only instructions, with a continue but-
ton to move to the next unit. These instructional units can also be configured with a
between-subjects randomization into a “lockout condition” where the instruction screen
has an active timer that only allows continuation after a specified amount of time.

3.2 Supported Practice Types

The system supports two forms of test items: the multiple choice items (which appear
in button form for touchscreen responsiveness) and the short-answer items. For multiple
choice items, the system allows the researcher to randomly display the order of two or
more answer options. These answer options may be specified for each individual ques-
tion, or be randomly selected from a larger “answer bank.” Feedback can be displayed
after incorrect responses. This feedback displays the correct answer for a fixed period

of time or until the user hits the spacebar, as specified in the TDF. If the trial is a short
answer item (multiple choice branching is in development), more complex branching
feedback is enabled which compares the response with a number of wrong responses,
each of which has specific feedback text in the stimulus file. This allows the system to
provide feedback tailored to particular response errors, hopefully promoting conceptual
learning by directly challenging misconceptions in the student’s model of the domain.

Since both the system and the user may be frustrated and deterred in their goals by
an incorrectly marked response, the system provides a few ways to identify correct re-
sponses with some flaws or ambiguity. These include partial matching using regular
expressions, simple Levenshtein proportion errors, or Levenshtein proportion for mul-
tiple synonyms. Each of these methods offers different advantages depending on the
test type. Regular expressions allow answer specification to pick up the presence of key
words for short answer responses, to automatically score relatively complex responses
(see the Circulatory System example below). Levenshtein proportion marks an item
correct if some proportion of the letters are correct (e.g. 75%).

Finally, a passive viewing trial type simply presents the stimulus (text, audio, or
image) for a fixed number of seconds or until the user hits the spacebar. Normally, a
fixed time is used, since unless the user population is intrinsically motivated, the stu-
dents or participants may truncate these study trials, reducing (possible) learning.

3.3 Datashop Export and Amazon Turk Integration

The system provides native export to the PSLC DataShop tab-delimited format style
with several custom fields. This functionality means that data collected in the system
can be immediately imported into DataShop for analysis, storage, and/or presentation
[12]. As part of the new LearnSphere project the DataShop is being expanded to include
a graphical workflow analysis tool with multiple methods (http://learnsphere.org/).
MoFaCTS users will be able to take advantage of these resources immediately. Further,
there is a library of prior analyses already shared within the community for DataShop
formatted files (https://pslcdatashop.web.cmu.edu/ExternalTools).

The system provides integration with Amazon's Mechanical Turk (MTurk) service.
This integration was added to ease the administrative burden often encountered when
running experiments with large numbers participants recruited via MTurk. A researcher
can oversee the experiment via a management screen within MoFaCTS that shows the
current progress of all participants. From the same screen, the researcher may approve
payment for a participant's work and/or pay a post-payment bonus. If using the “lockout
conditions” discussed previously, researchers may craft an automated message that the
system will send to Mechanical Turk users when their lockout expires (e.g., email a
reminder after a one-week retention interval).

4 Research using MoFaCTS

Described here are three recent experiments (one published as a dissertation, one in
preparation, and one submitted for publication, respectively), using MoFaCTS with dif-
ferent experimental designs and stimuli. These large complex experiments demonstrate
how flexible the system is for different tasks and goals.

This study assessed the effects of spaced practice on the ability to identify musical
intervals. A total of 187 individuals from both a psychology subject pool and MTurk
completed a pretest and then practiced identifying six musical intervals, with two mu-
sical intervals each randomly assigned to narrow, medium, and wide spacing for each
individual. During this practice, the musical intervals were presented at two tone levels
and were played as either harmonies or melodies. Participants were randomly assigned
to return for a posttest 2 min, 1 day, or 7 days later. All individuals received a posttest
of the same six musical intervals from practice at the same tone levels as practice and
at a transfer tone level. The posttest also contained both harmonic and melodic trials.

A second experiment which utilized several features of MoFaCTS, presented partic-
ipants with retrieval practice on questions about the circulatory system. A total of 178
participants, recruited through MTurk, completed the experiment producing valid data.
Participants read a text (about the circulatory system), completed a retrieval practice
session, and took a posttest. They were randomly assigned to practice retrieval in one
of four conditions from a 2 (question depth: factual, applied) x 2 (answer format: mul-
tiple choice, short answer) between-subjects design. Practice consisted of a total of 32
trials (eight questions repeated four times each), followed immediately by 16 posttest
trials (16 questions, not repeated). Each practice trial received immediate corrective
feedback. MoFaCTS was able to score the short answer responses immediately by
matching user type-ins to key words specified via regular expressions. This method was
flexible enough to allow us to account for common synonyms and misspellings discov-
ered through pilot testing. After practice, a posttest assessed repetition performance and
transfer to a different format, a different depth, and previously unpracticed concepts.

A third experiment involved an arguably even more complex design, which repli-
cated and extended prior work [13], in addition to testing refutation and long-term re-
tention. In this experiment approximately 450 MTurk users filled-in blanks for a col-
lection of 18 fill-in-the blank sentences about statistics to produce complete data. The
experiment used a 2x3 between-subjects design with 3 levels of retention interval (ei-
ther 2 minutes, 1 day or 3 days between 2 sessions of practice) and with 2 levels of
feedback (either simple feedback of the correct fill-in or refutational feedback for a
portion of the wrong answers). The within-subject design for the experiment crossed 3
levels of spacing (narrow, medium, or wide) with 3 levels of practice repetition (either
2, 4 or 8 repetitions) with 2 levels of fill-in variability during practice (same or random
fill repetitions) and 2 levels of fill-in variability during posttest (same or random fill-in
repetitions for each of the 9 items in each condition). Order of introduction (random or
fill-in first) for each scheduling condition was counterbalanced in addition to using two
different schedule orders, either starting in order from the beginning or from the end
(i.e. in reverse) of the schedule. Additional sub-sequence randomization was used to
prevent exact repetitions of the spacing of conditions from cueing recall. Posttest prac-
tice order tested each of the 18 items in random order with their respective response
variability condition for 3 rounds of testing.

5 Conclusions

MoFaCTS was create as a research tool to investigate the effect of instructional se-
quence manipulations. The system is released on bitbucket.org as open source software

(https://bitbucket.org/ppavlik/mofacts/overview). As development continues we wel-
come collaborators in building this research accelerator of research. With this in mind,
continued development will focus on not only increasing the capabilities in regard to
different and more complex types of trials or problems, but also on making the process
of creating a student model more streamlined so as to encourage the development of
multiple options for student models to explain and control practice in the system.

6 Acknowledgements

This work is supported by the National Science Foundation Data Infrastructure Build-
ing Blocks program under Grant No. (ACI-1443068) and the University of Memphis
Institute for Intelligent Systems.

7 References

1. Pavlik Jr., P.I., Presson, N., Dozzi, G., Wu, S.-m., MacWhinney, B., Koedinger, K.R.: The
Fact (Fact and Concept Training) System: A New Tool Linking Cognitive Science with
Educators. In: McNamara, D., Trafton, G. (eds.): Proceedings of the Twenty-Ninth Annual
Conference of the Cognitive Science Society, 1379–1384. Lawrence Erlbaum, Mahwah, NJ
(2007)

2. Johnson, N.F.: The Role of Chunking and Organization in the Process of Recall. The
psychology of learning and motivation: 4, 171-247. (1970)

3. Anderson, J.R., Pelletier, R.: A Development System for Model-Tracing Tutors.
Proceedings of the International Conference of the Learning Sciences, 1-8. Evanston, IL
(1991)

4. Meteor Development Group: Meteor. (2015), https://www.meteor.com/
5. Node.js Foundation: Node.Js. (2015), https://nodejs.org/
6. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O'Connor, E., Pfeiffer, S.:

Html5. (2014), http://www.w3.org/TR/html5/
7. @mdo, @fat: Bootstrap. (2015), http://getbootstrap.com/
8. Mohorovicic, S.: Implementing Responsive Web Design for Enhanced Web Presence.

Information & Communication Technology Electronics & Microelectronics (MIPRO), 2013
36th International Convention on, 1206-1210 (2013)

9. Bainomugisha, E., Carreton, A.L., Cutsem, T.v., Mostinckx, S., Meuter, W.d.: A Survey on
Reactive Programming. ACM Computing Surveys (CSUR): 45, 52. (2013)

10. MongoDB Inc.: Mongodb. (2015), https://www.mongodb.org/
11. Pavlik Jr., P.I., Anderson, J.R.: Using a Model to Compute the Optimal Schedule of Practice.

Journal of Experimental Psychology: Applied: 14, 101–117. (2008)
12. Koedinger, K.R., Baker, R.S., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A

Data Repository for the Edm Community: The Pslc Datashop. In: Romero , C., Ventura, S.,
Pechenizkiy, M. (eds.): Handbook of Educational Data Mining, Vol. 43. CRC Press, Boca
Raton (2010)

13. Maass, J.K., Pavlik Jr., P.I., Hua, H.: How Spacing and Variable Retrieval Practice Affect
the Learning of Statistics Concepts. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo,
M.F. (eds.): 17th International Conference on Artificial Intelligence in Education, Vol. 9112,
247-256. Springer International Publishing (2015)

