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Abstract. The effectiveness of Intelligent Tutoring Systems (ITS) research is en-
hanced by tools that allow researchers to quickly bridge the divide between the-
oretical and applied work. By providing a common infrastructure to test cognitive 
and learning science theories in authentic contexts with real students, the Mobile 
Fact and Concept Training System (MoFaCTS) can aid in accelerating ITS re-
search and real world implementation. MoFaCTS is run from a web browser and 
allows the teacher or administrator to set up a sequence of units of content. Be-
cause the “optimal practice” module is interchangeable, the system allows for the 
comparison of alternative methods of adaptive practice. To foster faster research 
progress, data export supports the DataShop transaction format, which allows 
quick analysis of data using the DataShop tools. Integration with Amazon Turk 
allows quick and efficient data collection from this source. 
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1 Introduction 

MoFaCTS was based on the FaCT system, which was created to make faster progress 
on laboratory research and its translation to the classroom [1]. MoFaCTS is the latest 
implementation of the FaCT system, which has new features in addition to running in 
HTML5, which provides mobility to any common web browser. The framework of 
MoFaCTS is based on an implicit theory of “chunk” learning [2] which assumes that 
learning of chunks occurs through discrete “trials” (e.g. a single step problem or fill-in-
in the blank sentence). As such it departs from the tradition of model tracing tutors [3], 
which focus on multistep problems of greater complexity, where the student is learning 
a sequence of rule applications. The simplified chunk-based approach in MoFaCTS 
allows the system to focus more clearly on the problem selection aspect of tutoring, and 
how the selected sequence can be improved. Moreover, from the beginning the system 
was designed without strong assumptions about the optimal schedule. Because of this 
the system is easy to adapt to the needs of specific projects. Screenshots of the system 
in action, see Figure 1, show a variety of functions, including multiple choice respond-
ing, fill-in-the-blank responding with branched feedback, and image-stimuli items. 



 

Fig. 1. Example screenshots. 

2 Client/ Server Architecture 

MoFaCTS was built using Meteor, a framework based on Node.js which uses a single 
programming language (JavaScript) for both the client and server logic [4-6]. Commu-
nication between the two sides of the architecture is handled transparently by the frame-
work. This architecture conveniently off-loads any complex computations needed to 
compute practice schedules to the client machine, which allows much larger numbers 
of users to interact with the system simultaneously. 

Since the web is a popular platform for content and application delivery, MoFaCTS 
is able to leverage a vast body of open source software. Currently this includes the 
Bootstrap CSS framework developed by Twitter [7]. Bootstrap provides MoFaCTS 
with a typographic and layout framework. Most importantly, Bootstrap contributes re-
sponsive web design, so content appears correctly on both desktop web browsers and 
mobile devices [8]. The HMTL displayed to the user is generated via Meteor's templat-
ing system. This system uses a style known as "reactive programming" [9]. A piece of 
code can change data on the server and trigger a change on the client. This style of 
programming works well with the frequent switches in display necessary when se-
quencing multiple educational content objects. 

The server portion of MoFaCTS runs on the Node.js JavaScript server, which gives 
it access to all of the libraries and asynchronous communication abilities of Node.js. In 
addition, the Meteor framework simplifies the server code required for an application 
of this type. When the client contacts the server, Meteor transparently provides data 
transport, call batching, and automated retry. This functionality leads to excellent per-
formance without the need for more complex software. This architecture is particularly 
useful given the need for frequent logging to maintain the database of users’ learning 
histories. This MoFaCTS data is stored in a document-oriented database system named 
MongoDB [10]. In addition, MongoDB is schema-free, which allows for rapid iteration 
when designing new features or upgrades, which is often a great advantage in research. 

3 Functionality 

MoFaCTS has two primary unit types, learning and assessment, which define its two 
main modes of application. Both kinds of units are specified in the control file for each 
“tutor”, which is called the tutor definition file (TDF). Each tutor definition file begins 
with a number of preliminaries, including the initial randomization commands. These 
randomizations allow the specification of shuffle and swap commands. The shuffle 



command generates random orders within groups of specified sequences (e.g. “<shuf-
fle> 0-5 6-11” shuffles the first 6 items among themselves and then shuffle the next six 
items among themselves). The swap command randomizes the order of those specified 
sequences (e.g. “<swap> 0-5 6-11” randomizes the order of the groups of sequences, 
so in this simple case it would be either 0-5 6-11 still or 6-11 0-5, while retaining the 
order of the subsequences). By running a shuffle and then a swap command, complex 
distributions of stimuli across conditions can be achieved. To enable comparisons of 
different assessment or learning conditions, the system also automatically randomizes 
into any number of between-subjects conditions. This choice is recorded in the data for 
each subject, and reinstated when they begin new sessions from the same root TDF, so 
multi-session between-subjects comparisons with counter-balancing are easily enabled. 

3.1 Units 

The first main type of unit is the assessment unit, which allows for complex schedules 
of content, where the TDF author has specified the number of repetitions and the loca-
tion in the sequence for each repetition of each item. Each repetition may be a test with 
or without feedback or a passive study opportunity. Assessment units may be used for 
quizzes in a classroom setting or for experiments looking at practice, forgetting, learn-
ing, and/or recall. In an experimental context, the system allows additional sequence 
level randomization, to make sure blocks of the same items are individually random-
ized, so that spacing conditions are not predictable. Any number of assessment units 
can be strung together, which allows pretest, practice and posttest portions to be orga-
nized individually to compose a larger experiment. Because the data architecture (de-
scribed below) saves the state of the learner at all times, assessment sessions are auto-
matically resumed where they were previously stopped, allowing for multiple experi-
mental sessions for the same experiment over days or weeks. 

The system also allows the specification of units with dynamic scheduling based on 
a select function. These units sequence the items according to a mechanism in the select 
function. This select function could be based on any sort of model of the learning and/or 
pedagogical rules. Typically, the adaptive learning module would be some version of 
Pavlik’s optimal learning method [11], which uses a computational model of memory 
to infer the best item to practice next.  

Although assessment and learning units can both provide brief instructional screens 
prior to practice, an “instructions unit” presents only instructions, with a continue but-
ton to move to the next unit. These instructional units can also be configured with a 
between-subjects randomization into a “lockout condition” where the instruction screen 
has an active timer that only allows continuation after a specified amount of time.  

3.2 Supported Practice Types 

The system supports two forms of test items: the multiple choice items (which appear 
in button form for touchscreen responsiveness) and the short-answer items. For multiple 
choice items, the system allows the researcher to randomly display the order of two or 
more answer options. These answer options may be specified for each individual ques-
tion, or be randomly selected from a larger “answer bank.” Feedback can be displayed 
after incorrect responses. This feedback displays the correct answer for a fixed period 



of time or until the user hits the spacebar, as specified in the TDF. If the trial is a short 
answer item (multiple choice branching is in development), more complex branching 
feedback is enabled which compares the response with a number of wrong responses, 
each of which has specific feedback text in the stimulus file. This allows the system to 
provide feedback tailored to particular response errors, hopefully promoting conceptual 
learning by directly challenging misconceptions in the student’s model of the domain. 

Since both the system and the user may be frustrated and deterred in their goals by 
an incorrectly marked response, the system provides a few ways to identify correct re-
sponses with some flaws or ambiguity. These include partial matching using regular 
expressions, simple Levenshtein proportion errors, or Levenshtein proportion for mul-
tiple synonyms. Each of these methods offers different advantages depending on the 
test type. Regular expressions allow answer specification to pick up the presence of key 
words for short answer responses, to automatically score relatively complex responses 
(see the Circulatory System example below). Levenshtein proportion marks an item 
correct if some proportion of the letters are correct (e.g. 75%).  

Finally, a passive viewing trial type simply presents the stimulus (text, audio, or 
image) for a fixed number of seconds or until the user hits the spacebar. Normally, a 
fixed time is used, since unless the user population is intrinsically motivated, the stu-
dents or participants may truncate these study trials, reducing (possible) learning. 

3.3 Datashop Export and Amazon Turk Integration 

The system provides native export to the PSLC DataShop tab-delimited format style 
with several custom fields. This functionality means that data collected in the system 
can be immediately imported into DataShop for analysis, storage, and/or presentation 
[12]. As part of the new LearnSphere project the DataShop is being expanded to include 
a graphical workflow analysis tool with multiple methods (http://learnsphere.org/).  
MoFaCTS users will be able to take advantage of these resources immediately. Further, 
there is a library of prior analyses already shared within the community for DataShop 
formatted files (https://pslcdatashop.web.cmu.edu/ExternalTools). 

The system provides integration with Amazon's Mechanical Turk (MTurk) service. 
This integration was added to ease the administrative burden often encountered when 
running experiments with large numbers participants recruited via MTurk. A researcher 
can oversee the experiment via a management screen within MoFaCTS that shows the 
current progress of all participants. From the same screen, the researcher may approve 
payment for a participant's work and/or pay a post-payment bonus. If using the “lockout 
conditions” discussed previously, researchers may craft an automated message that the 
system will send to Mechanical Turk users when their lockout expires (e.g., email a 
reminder after a one-week retention interval). 

4 Research using MoFaCTS 

Described here are three recent experiments (one published as a dissertation, one in 
preparation, and one submitted for publication, respectively), using MoFaCTS with dif-
ferent experimental designs and stimuli. These large complex experiments demonstrate 
how flexible the system is for different tasks and goals.  



This study assessed the effects of spaced practice on the ability to identify musical 
intervals. A total of 187 individuals from both a psychology subject pool and MTurk 
completed a pretest and then practiced identifying six musical intervals, with two mu-
sical intervals each randomly assigned to narrow, medium, and wide spacing for each 
individual. During this practice, the musical intervals were presented at two tone levels 
and were played as either harmonies or melodies. Participants were randomly assigned 
to return for a posttest 2 min, 1 day, or 7 days later. All individuals received a posttest 
of the same six musical intervals from practice at the same tone levels as practice and 
at a transfer tone level. The posttest also contained both harmonic and melodic trials. 

A second experiment which utilized several features of MoFaCTS, presented partic-
ipants with retrieval practice on questions about the circulatory system. A total of 178 
participants, recruited through MTurk, completed the experiment producing valid data. 
Participants read a text (about the circulatory system), completed a retrieval practice 
session, and took a posttest. They were randomly assigned to practice retrieval in one 
of four conditions from a 2 (question depth: factual, applied) x 2 (answer format: mul-
tiple choice, short answer) between-subjects design. Practice consisted of a total of 32 
trials (eight questions repeated four times each), followed immediately by 16 posttest 
trials (16 questions, not repeated). Each practice trial received immediate corrective 
feedback. MoFaCTS was able to score the short answer responses immediately by 
matching user type-ins to key words specified via regular expressions. This method was 
flexible enough to allow us to account for common synonyms and misspellings discov-
ered through pilot testing. After practice, a posttest assessed repetition performance and 
transfer to a different format, a different depth, and previously unpracticed concepts. 

A third experiment involved an arguably even more complex design, which repli-
cated and extended prior work [13], in addition to testing refutation and long-term re-
tention. In this experiment approximately 450 MTurk users filled-in blanks for a col-
lection of 18 fill-in-the blank sentences about statistics to produce complete data. The 
experiment used a 2x3 between-subjects design with 3 levels of retention interval (ei-
ther 2 minutes, 1 day or 3 days between 2 sessions of practice) and with 2 levels of 
feedback (either simple feedback of the correct fill-in or refutational feedback for a 
portion of the wrong answers). The within-subject design for the experiment crossed 3 
levels of spacing (narrow, medium, or wide) with 3 levels of practice repetition (either 
2, 4 or 8 repetitions) with 2 levels of fill-in variability during practice (same or random 
fill repetitions) and 2 levels of fill-in variability during posttest (same or random fill-in 
repetitions for each of the 9 items in each condition). Order of introduction (random or 
fill-in first) for each scheduling condition was counterbalanced in addition to using two 
different schedule orders, either starting in order from the beginning or from the end 
(i.e. in reverse) of the schedule. Additional sub-sequence randomization was used to 
prevent exact repetitions of the spacing of conditions from cueing recall. Posttest prac-
tice order tested each of the 18 items in random order with their respective response 
variability condition for 3 rounds of testing. 

5 Conclusions 

MoFaCTS was create as a research tool to investigate the effect of instructional se-
quence manipulations. The system is released on bitbucket.org as open source software 



(https://bitbucket.org/ppavlik/mofacts/overview). As development continues we wel-
come collaborators in building this research accelerator of research. With this in mind, 
continued development will focus on not only increasing the capabilities in regard to 
different and more complex types of trials or problems, but also on making the process 
of creating a student model more streamlined so as to encourage the development of 
multiple options for student models to explain and control practice in the system. 
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